1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
use core::cmp::PartialOrd;
use core::ops::{Sub, Div, Neg};
use num_traits::Zero;
pub trait ApproxEqRatio : Div<Output = Self> + Sub<Output = Self> + Neg<Output = Self>
+ PartialOrd + Zero + Sized + Copy
{
fn approx_eq_ratio(&self, other: &Self, ratio: Self) -> bool {
if *self < Self::zero() && *other > Self::zero() { return false; }
if *self > Self::zero() && *other < Self::zero() { return false; }
match (*self == Self::zero(), *other == Self::zero()) {
(true,true) => return true,
(true,false) => return false,
(false,true) => return false,
_ => { }
}
let (s,o) = if *self < Self::zero() {
(-*self, -*other)
} else {
(*self, *other)
};
let (smaller,larger) = if s < o {
(s,o)
} else {
(o,s)
};
let difference: Self = larger.sub(smaller);
let actual_ratio: Self = difference.div(larger);
actual_ratio < ratio
}
#[inline]
fn approx_ne_ratio(&self, other: &Self, ratio: Self) -> bool {
!self.approx_eq_ratio(other, ratio)
}
}
impl ApproxEqRatio for f32 { }
#[test]
fn f32_approx_eq_ratio_test1() {
let x: f32 = 0.00004_f32;
let y: f32 = 0.00004001_f32;
assert!(x.approx_eq_ratio(&y, 0.00025));
assert!(y.approx_eq_ratio(&x, 0.00025));
assert!(x.approx_ne_ratio(&y, 0.00024));
assert!(y.approx_ne_ratio(&x, 0.00024));
}
#[test]
fn f32_approx_eq_ratio_test2() {
let x: f32 = 0.00000000001_f32;
let y: f32 = 0.00000000005_f32;
assert!(x.approx_eq_ratio(&y, 0.81));
assert!(y.approx_ne_ratio(&x, 0.79));
}
#[test]
fn f32_approx_eq_ratio_test_zero_eq_zero_returns_true() {
let x: f32 = 0.0_f32;
assert!(x.approx_eq_ratio(&x,0.1) == true);
}
#[test]
fn f32_approx_eq_ratio_test_zero_ne_zero_returns_false() {
let x: f32 = 0.0_f32;
assert!(x.approx_ne_ratio(&x,0.1) == false);
}
#[test]
fn f32_approx_eq_ratio_test_against_a_zero_is_false() {
let x: f32 = 0.0_f32;
let y: f32 = 0.1_f32;
assert!(x.approx_eq_ratio(&y,0.1) == false);
assert!(y.approx_eq_ratio(&x,0.1) == false);
}
#[test]
fn f32_approx_eq_ratio_test_negative_numbers() {
let x: f32 = -3.0_f32;
let y: f32 = -4.0_f32;
assert!(x.approx_eq_ratio(&y,0.1) == false);
}
impl ApproxEqRatio for f64 { }
#[test]
fn f64_approx_eq_ratio_test1() {
let x: f64 = 0.000000004_f64;
let y: f64 = 0.000000004001_f64;
assert!(x.approx_eq_ratio(&y, 0.00025));
assert!(y.approx_eq_ratio(&x, 0.00025));
assert!(x.approx_ne_ratio(&y, 0.00024));
assert!(y.approx_ne_ratio(&x, 0.00024));
}
#[test]
fn f64_approx_eq_ratio_test2() {
let x: f64 = 0.0000000000000001_f64;
let y: f64 = 0.0000000000000005_f64;
assert!(x.approx_eq_ratio(&y, 0.81));
assert!(y.approx_ne_ratio(&x, 0.79));
}
#[test]
fn f64_approx_eq_ratio_test_zero_eq_zero_returns_true() {
let x: f64 = 0.0_f64;
assert!(x.approx_eq_ratio(&x,0.1) == true);
}
#[test]
fn f64_approx_eq_ratio_test_zero_ne_zero_returns_false() {
let x: f64 = 0.0_f64;
assert!(x.approx_ne_ratio(&x,0.1) == false);
}
#[test]
fn f64_approx_eq_ratio_test_negative_numbers() {
let x: f64 = -3.0_f64;
let y: f64 = -4.0_f64;
assert!(x.approx_eq_ratio(&y,0.1) == false);
}